Search results for " 3D-QSAR"
showing 4 items of 4 documents
An Integrated Pharmacophore/Docking/3D-QSAR Approach to Screening a Large Library of Products in Search of Future Botulinum Neurotoxin A Inhibitors
2020
Botulinum toxins are neurotoxins produced by Clostridium botulinum. This toxin can be lethal for humans as a cause of botulism
Receptor-guided 3D-QSAR approach for the discovery of c-kit tyrosine kinase inhibitors
2012
Studies of the the three-dimensional quantitative structure–activity relationships for ninety-five c-kit tyrosine kinase inhibitors were performed. Based on a co-crystallized compound (1 T46), known inhibitors were aligned with c-kit by induced-fit docking, and multiple training/test set splitting was performed to validate the selected pharmacophore model. The best pharmacophore model consisted of five features: one hydrogen-bond donor and four aromatic rings. Reliable statistics were obtained (R 2 = 0.95, R pred 2 = 0.75), and the model was validated by using it to select c-kit inhibitors from a database; 82.1% of the hits it retrieved were active. Accordingly, our model can be reliably u…
A3 adenosine receptor: Homology modeling and 3D-QSAR studies
2012
Adenosine receptors (AR) belong to the superfamily of G-protein-coupled receptors (GPCRs). They are divided into four subtypes (A1, A2A, A2B, and A3) [1], and can be distinguished on the basis of their distinct molecular structures, distinct tissues distribution, and selectivity for adenosine analogs [2,3]. The hA3R, the most recently identified adenosine receptor, is involved in a variety of intracellular signaling pathways and physiological functions [4]. Expression of A3R was reported to be elevated in cancerous tissues [5], and A3 antagonists have been proposed for therapeutic treatments of cancer. The recent literature availability of crystal structure of hA2A adenosine receptor (PDB c…
IKK-β inhibitors: An analysis of drug–receptor interaction by using Molecular Docking and Pharmacophore 3D-QSAR approaches
2010
Abstract The IKK kinases family represents a thrilling area of research because of its importance in regulating the activity of NF-kB transcription factors. The discovery of the central role played by IKK-β in the activation of transcription in response to apoptotic or inflammatory stimuli allowed to considerate its modulation as a promising tool for the treatment of chronic inflammation and cancer. To date, several IKK-β inhibitors have been discovered and tested. In this work, an analysis of the interactions between different classes of inhibitors and their biological target was performed, through the application of Molecular Docking and Pharmacophore/3D-QSAR approaches to a set of 141 in…